A NEW CONVENIENT SYNTHESIS OF 3(2H)-FURANONES

R. Antonioletti, F. Bonadies, A. Scettri

Centro di Studio per la Chimica delle Sostanze Organiche Naturali del C.N.R. Dipartimento di Chimica, Università "La Sapienza", P.le A. Moro 5, I-00185 Roma, ITALY.

<u>Abstract</u>: A selective oxidative fission of the heterocyclic nucleus of 5-methyl-2-(acylmethyl)furans or 2-(5-methyl-2-furyl)-1,3-dicarbonyl compounds by m-chloroperbenzoic acid allows the easy synthesis of the 3(2H)-furanone system.

The 3(2H)-furanone ring represents the central structural element of many natural products characterised by important biological activity as antitumor agents (jathropone, the eremantholides, geiparvarin), 1 flavouring matters, 2 etc.

Nevertheless, a rather limited number of general methods of synthesis of the 3(2H)-furanone system has been reported in the past years and, often, they involve key-intermediates whose preparation requires multistep sequences. 1 , 2

Now, we report a very simple procedure that allows the one-pot conversion of the easily available furan derivatives $\underline{1}^3$ into the 3(2H)-furanones $\underline{2}$.

a):
$$R^1 = -Me$$
; $R^2 = -H$ 75% 4,5
b): $R^1 = -Ph$; $R^2 = -H$ 82%
c): $R^1 = -Me$; $R^2 = -COOEt$ 56%
d): $R^1 = -Ph$; $R^2 = -COOEt$ 58%
e): $R^1 = -Me$; $R^2 = -COOEt$ 55%

In fact, by treatment with m-chloroperbenzoic acid (m-CPBA) under controlled reaction conditions, compounds $\underline{1}$ undergo a selective oxidation of the furan nucleus, leading to the open intermediate \underline{A} . \underline{A} is not isolable since an internal Michael addition of the enolic -OH on the activated C-C double bond of the enedicarbonyl moiety occurs in very fast way, yielding the furanones $\underline{2}$. It has to be noted that the conversion shows to proceed satisfactorily, although the unavoidable and significant formation of an overoxidation byproduct, $\underline{3}$, causes a decreasing of yield in the case of the starting materials 1c-e.

On the ground of $^1\text{H-NMR}$ data compounds $\underline{3}$ show to be a mixture of diastereoisomers, whose separation has failed in spite of several attempts: however, further investigations are in progress to explain and depress the origin of 3.

In a typical experimental procedure 30 ml of 0.3 M solution of m-CPBA in $CHCl_3$ are added dropwise over a period of 5 hours to 5 ml of 1 M solution of $\underline{1}$ in $CHCl_3$ at $-10^{\circ}C$. Then the mixture is stirred overnight at $-5^{\circ}C$. Furanones $\underline{2}$ and $\underline{3}$ are obtained through column chromatography on silica gel, previously washed with 2 N aqueous hydrochloric acid, by elution with benzene-diethyl ether mixtures.

References

- Smith III, A.B., Levenberg, P.A., Jerris, P.J., Scarborough, R.M., Wovkulich, P.M., J. Am. Chem. Soc., (1981), 103, 1501 and references therein
- 2) Andersen, S.H., Sharma, K.K., Torsell, K.B.G., <u>Tetrahedron</u>, (1983), <u>39</u> 2241 and references therein
- D'Ascoli, R., D'Auria, M., Piancatelli, G., Scettri, A., <u>Tetrahedron</u>, (1979), 35, (2905)
- 4) All the yields refer to isolated, chromatographically pure, compounds
- 5) Spectral data (IR, H-NMR and MS) are in agreement with the proposed structures. Satisfactory elemental analyses have been obtained for all compounds.

(Received in UK 30 March 1987)